Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.В.ДВ.07.02 Электрические и гидравлические приводы								
_	мехатронных и робототехнических систем	<u></u>							
	наименование дисциплины (модуля) в соответствии с учебным планом								
Направл	вление подготовки / специальность								
	15.03.06 Мехатроника и робототехника								
Направл	Направленность (профиль)								
	15.03.06 Мехатроника и робототехника								
Форма	обучения очная								
Год наб	бора 2021								

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили							
канд.те	хн.наук, доцент, Смольников А.П.						
	попучость инишизаци фэмилия						

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Приобретение знаний, умений и навыков, необходимых для инженерной приводной техникой, применяемой В мехатронных робототехнических системах.

1.2 Задачи изучения дисциплины

Получение общекультурных профессиональных компетенций, И приведенных в пункте 1.3. К системам, которые используются для управления объектами робототехники, предъявляются высокие требования к качеству их работы. Поэтому в настоящее время в робототехнике и мехатронике широко применяются системы электрического, гидравлического и пневматического привода. Приводы являются одной из наиболее важных составляющих всех объектов робототехники, к которым предъявляются высокие требования к качеству их работы. В дисциплине рассматриваются основные принципы построения, анализа И синтеза современных систем электрического, гидравлического и пневматического привода.

1.3 Перечень планируемых результатов обучения по дисциплине соотнесенных планируемыми c результатами образовательной программы

* * *									
Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине								
ПК-2: Способен разрабатыват	гь разделы проектов автоматизации и								
роботизации производства									
ПК-2.1: Разрабатывать	Типовые проекты разделов проектов автоматизации								
разделы проектов	и роботизации производства по профилю								
автоматизации и роботизации	дисциплины								
производства	Разрабатывать типовые проекты разделов проектов								
	автоматизации и роботизации производства по								
	профилю дисциплины								
	Оформлением технической документации типовых								
	проектов разделов автоматизации и роботизации								
	производства по профилю дисциплины								
ПК-2.2: Разрабатывать	Типовые проекты модулей и узлов мехатронных и								
технические проекты	робототехнических систем по профилю дисциплины								
отдельных узлов и модулей	Разрабатывать проекты модулей и узлов								
мехатронных и	мехатронных и робототехнических систем по								
робототехнических систем	профилю дисциплины								
	Типовыми проектами модулей и узлов								
	мехатронных и робототехнических систем по								
	профилю дисциплины								
=	и контролировать процессы по пусконаладке,								
переналадке, техническому обслуживанию и ремонту мехатронных и									

робототехнических систем

T10 5 1 T	l m						
ПК-7.1: Применять	Технологию процессов пусконаладки и нормативно-						
нормативно-техническую	техническую документацию роботизированных						
документацию по	систем по профилю дисциплины						
эксплуатации и наладке	Применять нормативно-техническую						
роботизированных систем	документациюв в процессе роботизированных						
	систем по профилю дисциплины						
	Технологиями процессов пусконаладки и видами						
	нормативно-техническую документации в процессе						
	обслуживания роботизированных систем по						
	профилю дисциплины						
ПК-7.2: Документально	Состав технической документации при пуске и						
сопровождать процессы	эксплуатации роботизированных систем						
пусконаладки и эксплуатации	Использовать техническую документацию при						
роботизированных систем	пуске и эксплуатации роботизированных систем						
	Способами чтения и коррекции технической						
	документации при пуске и эксплуатации						
	роботизированных систем						

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ

URL-адрес и название электронного обучающего курса: https://e.sfu-kras.ru/course/view.php?id=28353 .

2. Объем дисциплины (модуля)

		C	ЭM
Вид учебной работы	Всего, зачетных единиц (акад.час)	1	2
Контактная работа с преподавателем:	2,5 (90)		
занятия лекционного типа	1 (36)		
лабораторные работы	1,5 (54)		
Самостоятельная работа обучающихся:	2,5 (90)		
курсовое проектирование (КП)	Нет		
курсовая работа (КР)	Нет		
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)		

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

	Контактная работа, ак. час.								
		Занятия лекционного типа		Заня	тия семин	Самостоятельная работа, ак. час.			
№ п/п	Модули, темы (разделы) дисциплины			Семинары и/или Практические занятия				Лабораторные работы и/или Практикумы	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1.00	бщие сведения о приводах роботов.Электроприводы с дв	игателям	и постоя	нного то	ка				
	1. Общие сведения о приводах роботов	2							
	2. Основы работы двигателя постоянного тока	2							
	3. Способы регулирования скорости двигателя постоянного тока	2							
	4. Свойства тиристорного преобразователя в системе ТП-ДПТ	2							
	5. Динамические свойства двигателя постоянного тока	2							
	6. Тиристорные преобразователи в приводах постоянного тока	2							
	7. Принципы построения систем подчинённого регулирования	2							
	8. Оптимизация контура тока якоря	2							
	9. Оптимизация контура скорости	2							

	1	1	1		 i	
10. Математические модели машин постоянного тока в системе SimPowerSystems				4		
11. Исследование системы подчиненного регулирования скорости двигателя				4		
12. Привод робота. Лабораторная работа по электроприводу постоянного тока промышленного робота на базе стенда «Привод робота ТУР-10К» и применения технологий виртуальных инструментов от фирмы National Instruments				2		
13. Система автоматического регулирования привода робота. Лабораторная работа по электроприводу постоянного тока промышленного робота на базе стенда «Привод робота ТУР-10К» и применения технологий виртуальных инструментов от фирмы National Instruments				4		
14. Контур управления позиционированием привода робота				4		
15. Основные компоненты электропривода Кемек. Лабораторная работа выполняется на стенде, содержащем двухдвигательный привод переменного тока Micromaster 440 и привод постоянного тока Кемек.				2		
16. Каналы формирования команд и задания скорости. Лабораторные работы по приводу переменного тока Micromaster 440 на базе стендов приводов и применения компьютерных средств поддержки Starter и DriveMonitor от фирмы Siemens.				8		

17. Параметрирование с операторной панели. Лабораторные работы по приводу переменного тока Місготаster 440 на базе стендов приводов и применения компьютерных средств поддержки Starter и DriveMonitor от фирмы Siemens 18.				8		18	
19.							
2. Электроприводы переменного тока на базе асинхронных	и синхрог	іных дви	гателей				
1. Конструкция асинхронного двигателя переменного тока. Принцип работы асинхронного двигателя.	2						
2. Основные параметры двигателя	2						
3. Асинхронный двигатель как объект управления	2						
4. Преобразователи частоты. Способы управления и режимы привода	2						
5. Способы торможения	2						
6. Синхронный двигатель с постоянным магнитом	2						
7. Математические модели машин переменного тока в системе Sim Power Systems				4			
8. Ввод привода в эксплуатацию с применением компьютерных средств поддержки				10			
9. Привод переменного тока с генератором нагрузок				4			
3. Электроприводы с шаговыми двигателями, на базе элект	ромагнит	ных муф	T				
1. Электроприводы с шаговыми двигателями, приводы на базе электромагнитных муфт, механизмы перемещений на основе пьезокерамики	2						
4. Электрогидравлические и пневматические приводы			1		ı		
1. Электрогидравлические приводы	2						
2. Пневматические приводы	2						

3.				72	
4.					
Всего	36		54	90	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Балковой А. П., Цаценкин В. К. Прецизионный электропривод с вентильными двигателями(Москва: МЭИ).
- 2. Лепешкин А. В., Михайлин А. А., Беленков Ю. А. Гидравлические и пневматические системы: учебник для студентов среднего профессионального образования по спец. 151901 "Технология машиностроения" (Москва: Академия).
- 3. Кацман М. М. Электрический привод: учебник для студентов учреждений сред. проф. образования(Москва: Академия).
- 4. Фираго Б. И. Расчеты по электроприводу производственных машин и механизмов: учебное пособие для студентов вузов по специальности "Автоматизированные электроприводы" (Минск: Техноперспектива).
- 5. Поляков А. Е., Чесноков А. В., Филимонова Е. М. Электрические машины, электропривод и системы интеллектуального управления электротехническими комплексами: учебное пособие для студентов вузов, обучающихся по дисциплине "Электротехника" (Москва: Форум).
- 6. Белов М. П., Зементов О. И., Козярук А. Е., Козлова Л. П., Новиков В. А., Новиков В. А., Чернигов Л. М. Инжиниринг электроприводов и систем автоматизации: учеб. пособие для вузов по спец. 140604 "Электропривод и автоматика промышленных установок и технологических комплексов" направ. подг. 140600 "Электротехника, электромеханика и электротехнологии" (Москва: Академия).
- 7. Онищенко Г. Б. Электрический привод: учебник для вузов по направлению подготовки "Электротехника, электромеханика и электротехнологии" (Москва: Академия).
- 8. Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием: учебник для вузов(Москва: Академия).
- 9. Башарин А. В., Новиков В. А., Соколовский Г. Г. Управление электроприводами: учеб. пособие для вузов(Ленинград: Энергоиздат, Ленингр. отд-ние).
- 10. Кенио Т. Шаговые двигатели и их микропроцессорные системы управления: пер. с англ. (Москва: Энергоатомиздат).
- 11. Дамбраускас А.П., Рыбин А.А., Дубровский И.Л. Микропроцессорное управление электроприводами промышленных роботов: учеб. пособие (Красноярск: ИПЦ КГТУ).
- 12. Рыбин А. А. Привод переменного тока Micromaster 440: [лаб. практикум](Красноярск: ИПК СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Учебно-исследовательская система инженерных и научных расчетов Matlab 8.0.

2. Пакет Starter фирмы Siemens для связи привода Micromaster 440 с компьютером.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Не используются.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Проведение занятий лекционного типа требует оснащение лекционного зала мультимедийным оборудованием (проектор, интерактивная доска) — ауд. Б-202.

Поведение лабораторных работ требует следующего оснащения: компьютерный класс, оснащенный компьютерами с необходимым программным обеспечением, приведенным в п. 9.1, и доступом в интернет; учебная лаборатория «Автоматическое управление и приводная техника» ауд. Б-202.